
J Stat Phys (2008) 132: 129–151
DOI 10.1007/s10955-008-9542-y

Stokesian Dynamics—The BBGKY Hierarchy for
Correlation Functions

Bogdan Cichocki · Krzysztof Sadlej

Received: 15 January 2008 / Accepted: 3 April 2008 / Published online: 25 April 2008
© Springer Science+Business Media, LLC 2008

Abstract A statistical description of a system of hard particles immersed in a viscous fluid
is introduced and analyzed. Neglecting inertial effects and Brownian motion—i.e. assuming
Stokesian dynamics for the particles, hierarchies of equations governing the time evolution
of the reduced distribution functions, and for the correlation functions respectively, are de-
rived. It is shown that all non-integrable expressions contained in these equations, stemming
from long-range hydrodynamic interactions arising between particles, can be resummed to
form physically meaningful fields. Applications of this theoretical scheme are sketched.

Keywords Stokesian dynamics · BBGKY hierarchy · Reduced distribution functions ·
Correlation functions · Suspensions · Hydrodynamic interactions

1 Introduction

In recent years, due to a growing interest in micro-fluidics, bio-physics as well as technolog-
ical applications, the properties of suspensions, i.e. systems consisting of particles immersed
in a viscous fluid, have attracted significant experimental [5, 16, 25, 26] and numerical re-
search [10, 21, 22]. The theory has nevertheless stayed somewhat behind, and many im-
portant problems have been left unresolved. The aim of this work is to elucidate some of
them.

Motion of a suspension of hard particles in an external force field and ambient fluid ve-
locity field will be considered in this work. Particles and their velocities will be assumed to
be small enough to validate the zero Reynold’s number approximation to the Navier-Stokes
equation describing fluid motion. On the other hand they will be expected to be large enough
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to neglect the influence of Brownian motion. These assumptions (physical particle size of
the order of 10–100 µm) will justify the description of the system in terms of Stokesian
particle dynamics. This implies that the relation between forces acting on particles or the
ambient flow, and the velocities of the particles is linear. It is given by the so called mobility
matrix when considering forces acting on particles, and the convection operator when the
influence of the ambient flow is of interest. Both these operators depend on the configuration
of all particles and describe the influence particles have on each other through fluid velocity
fields they create when moving. These interactions are called hydrodynamic. Inertial effects
are left out. Despite its apparent simplicity, an explicit theoretical analysis of the consid-
ered systems is surprisingly complicated due to properties of the hydrodynamic interactions.
These are non-integrable, decaying as 1/r with the interparticle distance r , many-particle,
and highly non-linear leading to very peculiar problems. The representative example is the
long-standing dispute over system-size dependence of velocity fluctuations [6, 20, 26]. As
noticed by Caflish and Luke [6], in a suspension, where particle positions are random, the
velocity fluctuations scale with the size of the system. These are therefore formally infi-
nite in the thermodynamic limit. A possible theoretical solution to this problem was found
by Koch and Shaqfeh [20]. It was shown that once the pair-distribution function satisfies a
strict criterion, the velocity fluctuations are indeed bounded. The mechanism by which this
is accomplished may be called hydrodynamic screening, in analogy to the Debye-Hückel
screening in electrolytes. Unfortunately the precise form of the pair-distribution function,
describing the microstructure of a suspension in stationary state was not found.

A second, somewhat forgotten issue is the derivation of the pair correlation function de-
scribing the stationary microstructure of a polydisperse (i.e. consisting of particles of differ-
ent size and density) and in particular a monodisperse (i.e. consisting of identical particles),
sedimenting suspension. A solution valid for low concentrations of polydisperse particles
was obtained by Batchelor and Wen [2, 3] in 1982. By considering only two-particle dy-
namics, they where able to derive and numerically solve an equation for the pair distribution
function. Their analysis presents nevertheless several problem. The basic one is the lack of a
solution for the case of a monodisperse suspension—in fact, for identical particles the equa-
tion considered by Batchelor vanishes identically. Even more striking is the non-uniqueness
of the form of the distribution function and the value of the sedimentation coefficient in the
limit of identical particles. As a polydisperse suspension is described by two parameters—
the ratio of particle densities and particle radii—an arbitrary number of ways of calculating
this limit exist. A proper solution of the problem would render the same result for all these
ways, which is not true in the case of Batchelors derivation.

Our aim is to construct a statistical description of a homogeneous suspension, which
will be free of the limitations present in Batchelors construction and will simultaneously be
coherent with Koch and Shaqfeh’s criterion for finite velocity fluctuations. Evolving away
from an initial configuration, a suspension reaches a non-equilibrium stationary state. The
problem of interest is then to quantify correlations arising between particle positions. We
will here adopt a solution method based on the analysis of the BBGKY (Bogolubov-Born-
Green-Kirkwood-Yvon) [1] hierarchy for those functions. Complications encountered are
due to the extremely long-range of hydrodynamic interactions leading to non-locality of the
equations. This is in fact a situation, which is very similar to the one confronted in systems
of interacting charges. The known, in that case, solution along the lines of the Debye-Hückel
theory might also be derived through an analysis of the equilibrium BBGKY hierarchy for
that system. This has been described by A.E. Glauberman and I.P. Yukhnovskii [13–15]
and summarized in the monograph by H. Falkenhagen [11]. A similar line of reasoning can
be used to find the stationary, non-equilibrium distribution function for a system of par-
ticles described by Stokesian dynamics. In this work we will focus on the derivation of



Stokesian Dynamics—The BBGKY Hierarchy for Correlation Functions 131

the BBGKY hierarchies for reduced distribution functions and correlation functions respec-
tively. An analysis of these will lead to a resummation procedure, which will explicitly dis-
tinguish all non-integrable expressions and allow for a physical interpretation of correlation
fields (between the suspension velocity fluctuations and particle concentration fluctuations)
which then emerge. The feasibility of such a description is a crucial step toward the so-
lution of the problem of finding the stationary state microstructure of a hydrodynamically
interacting suspension of particles.

The structure of this paper is the following. In Sect. 2 a general statistical formalism is in-
troduced. Next, in Sect. 3 hydrodynamic interactions arising between particles are described.
The hierarchies of equations describing the time evolution of the reduced distribution func-
tions and the correlation functions are derived in Sects. 4 and 5, respectively. Then in Sect. 6
all non-integrable expressions found in these equations are explicitly isolated and resummed
to form physical fields. Concluding remarks have been placed in Sect. 7.

Supplementary results have been put in the Appendixes. Appendix A contains informa-
tion and formulas necessary in order to generalize the results obtained in the main sections—
valid for identical particles—to a polydisperse suspension. Appendix B presents briefly a
diagrammatic technique, useful in the analysis of the considered BBGKY hierarchies.

2 Statistical Description of a Particle System with Stokesian Dynamics

In this paper we consider a system of N spherical hard particles of equal radii a, immersed
in a viscous fluid of viscosity η and volume V . The Reynold’s number is assumed to be
small. Particles are nevertheless large enough to neglect the influence of Brownian motion
and the timescale, at which the system is observed, justifies the description of the fluid by
means of the stationary Stokes equations. In this regime the state of the whole system, at a
given moment of time, is fully described once the configuration X = {R1, . . . ,RN } of all
N particles is known. Such a system will be referred to as a monodisperse, non-Brownian
suspension and the dynamics—Stokesian.

The evolution of the system is described once given the velocities of the particles U i , i =
1,2, . . . , as in Stokesian dynamics, inertial effects are absent. These quantities depend upon
two elements

U i = U force
i + Uflow

i . (1)

One is the contribution from external forces acting on particles. It is of the form

U force
i =

∑

j

μt t
ij (X)F j , i = 1,2, . . . , (2)

where F j is the total external force acting on particle j , and μt t is the translational part of
the mobility matrix [8]. This matrix is defined in general as

μ =
(

μt t μtr

μrt μrr

)
, (3)

and binds the translational (t) and rotational (r) velocities of the particles with the forces
and torques, according to the linear relation

(
U i

�i

)
=

N∑

j=1

(
μt t

ij μtr
ij

μrt
ij μrr

ij

)(
F j

T j

)
. (4)
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Here T j is the torque acting of particle j and �i the rotational velocity of particle i. In this
work torques acting on the particles will be assumed to be zero and only the translational
motion is of our interest. This restriction can nevertheless easily be relaxed and does not
limit the generality of the considerations which follow.

In a homogeneous system of identical particles, the forces F j are all equal. But in gen-
eral, as the force field may depend on the position considered, so does the total external
forces acting on particles. Then F j ≡ F (Rj ). The most universal case of a polydisperse
suspension of different particles, when the external forces acting on particles depend on
their radii and densities will be discussed in Appendix A, as apart from some notational
problems, it does not introduce new qualitative challenges into this theory.

The particles may also be immersed in an ambient flow v0 which induces their motion
through convection. This mechanism is described by the second element of (1), given by

Uflow
i =

∫
dr ′Ct (Ri , r

′|X)v0(r
′) ≡ Ct

i (X)v0, (5)

where Ct
i (X) [12] is the translational part of the convection operator which provides the

value of the translational velocity of the chosen i-th particle in the suspension, due to motion
in an ambient flow v0. The derivation and properties of the introduced operators will be
discussed in the next section.

If the suspension is enclosed in a rigid container, as is the case in a typical experimental
setup, the ambient flow v0 is equal to zero. Due to the structure, and for the sake of generality
of applications of the equations which follow, it is nevertheless preferable to keep the term
with v0 in the evolution equations.

Summarizing, the evolution of the system state is in the situation considered, described
by a set of coupled, first-order differential equations of the form

dRi

dt
= U i ≡

N∑

j=1

μt t
ij (X)F j + Ct

i (X)v0, i = 1,2, . . . . (6)

Such particle dynamics will be called Stokesian. These equations (6) provide a detailed de-
scription of the particle trajectories as they evolve in time. But due to the chaotic nature of
this movement [18], a proper characterization of the future system state is essentially im-
possible. Therefore, a statistical description of a suspension is necessary. It is introduced
through the particle distribution function ρ(X; t), defined as ρ(X; t)dX being the probabil-
ity of finding the particles in a configuration dX around X at time t . An equation governing
the time evolution of this function is a particle number conservation equation in the config-
uration space of N particles. It follows from (6) and is given by

∂ρ(X; t)
∂t

+
∑

i

∇i · {U iρ(X; t)} = 0. (7)

This is the Liouville equation for the considered system.
The particle probability function ρ(X; t) contains all available information about the

system. Equation (7) defining its time evolution is in fact equivalent to the set of (6)
describing in detail the precise trajectories of all the particles. As usually done in non-
equilibrium statistical mechanics [1], a description using the reduced distribution functions
n(r1, . . . , r s; t), s = 1,2, . . . is extracted from the elaborate many-particle dynamics. In a
homogeneous system n(r1) = n is the concentration of particles. In general these functions
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should be interpreted as n(r1, . . . , r s; t)dr1 · · ·dr s being the average number of ensembles
of s particles in which at time t , one of the particles is in position dr1 around r1, another
in dr2 around r2 and so on. It should be stressed, that it usually suffices to know the two-
particle distribution function in order to calculate the basic parameters of the system, such
as its static or dynamic response coefficients.

In the sections which follow our aim will be to find and discuss in detail the equations
which govern the time evolution of the reduced distribution functions. These will be de-
rived from the Liouville equation (7). Their structure is dictated by the properties of the
fluid-mediated interactions expressed by the hydrodynamic operators which describe the in-
fluence of external forces and ambient flows on the particle velocities. A brief summary of
the derivation of these operators is given in the next section.

3 Hydrodynamic Operators

In this section we will derive and analyze the properties of the hydrodynamic operators μ

(3) and C (5) which describe the dynamics of the system.
It will be assumed, that the fluid velocity field v(r) is governed by the Stokes equations

[19]

η∇2v − ∇p = 0,
(8)

∇ · v = 0,

where p(r) is the pressure field.
For the system considered these must be solved together with appropriate boundary con-

ditions which, in this case are

v(r) = ui (r) ≡ U i + �i × (r − Ri ) r ∈ Si, i = 1,2 . . . , (9)

for r pointing to a point on the surface Si of the i-th particle—the fluid follows the motion of
the particle at its surface. We will refer to this requirement as the stick-boundary condition.
Further, conditions are specified at the boundaries of the whole system.

The Stokes equations as given by (8) describe fluid motion outside of the particles. The
key problem is therefore, how to extract from those equations, information about particle
movement, and in particular, the relation between the ambient flow, external forces acting on
the particles and their velocities. A possible solution postulates an extension of the validity
of the Stokes equations to the interior of the spheres, by introducing induced force densities
f i (r) located on their surfaces [23]. These force densities are chosen such, that the solution
of

η∇2v − ∇p = −
N∑

i=1

f i , (10)

∇ · v = 0, (11)

inside the particles describes a fictitious fluid motion which follows exactly their rigid body
motion ui (r) given by (9), simultaneously coinciding with the solution of the homogeneous
Stokes equations (8) outside of the particles. Such a choice of force densities has a further
advantage. The solution v(r|X) of (10), when averaged over particle configurations X, has
the interpretation of the macroscopic suspension velocity.



134 B. Cichocki, K. Sadlej

Due to the linear character of the Stokes equation, the relation between the fluid velocity
field and the force densities introduced is linear. It is thus written, using an integral operator
with the kernel T , in the following form:

v(r|X) = v0(r) +
∫

T (r, r ′)f (r ′|X)dr, (12)

where f stands for the complete force density which is the sum of all f i for i = 1, . . . ,N

(i.e. the term standing on the right side of (10)). In the operator notation, this equation has
the simple form

v = v0 + T f . (13)

If considering an unbounded system, as will be done in this work, the operator kernel
T (r, r ′) = T 0(r − r ′) is the Oseen tensor

T 0(r) = 1

8πηr
(I + r̂ r̂), (14)

where r̂ = r/|r|.
The introduction of induced force densities and the formulation of the formal solution

(12) can be used to find the relation between external forces acting on particles, their veloc-
ities and the ambient flow. The induced force densities are set by the boundary conditions
(9) and the translational and rotational velocities of the particles. Taking into account the
integral representation (12), these may be written as

[ui (r) − v0(r)]r∈Si
=

∑

j

∫
dr ′T 0(r − r ′)f j (r

′). (15)

This now is an integral equation, where the known quantities are the velocities U i and �i ,
or equivalently ui (see (9)), and the ambient flow v0, whereas the force densities f i are to
be found.

One of the solution methods of the integral equation (15), i.e. the calculation of induced
force densities f i , is based on a multipole expansion. This scheme is described in detail for
example in [9]. Here we present just the basic ideas and necessary formulas. To start with,
all quantities present in (15) are projected onto a complete set of functions v±

lmσ (r − Ri ),
which are solutions of the homogeneous Stokes equations (8). Indexes l,m,σ take values
l = 1, . . . , m = −l, . . . , l and σ = 0,1,2. The solutions v+

lmσ (r − Ri ) are regular at r = Ri

and grow to infinity, while v−
lmσ (r − Ri ) are singular at r = Ri and vanish at infinity. The

fluid velocity around each particle can thus be written as an infinite series

ui (r) − v0(r) =
∑

lmσ

c(ilmσ)v+
lmσ (r − Ri ), (16)

where coefficients c(ilmσ) are the multipole elements of this field. Respectively, the multi-
pole elements of the force density, according to [9], are defined as

f (j lmσ) =
∫

drv+
lmσ (r − Rj ) · f j (r). (17)

In the multipole language, the integral equation (15) becomes a linear algebraic equation
connecting various multipoles c(i), i = 1,2, . . . of the fluid velocity on particles’ surfaces
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and the multipoles f (j), j = 1,2, . . . of the induced force densities. Because the influence
of an induced force density located on a given particle, on that particles velocity is strictly
different from the influence of force densities established on other particles, this equation is
split into two parts. One is described by a single-particle operator Z0 defined by

[
Z−1

0 (i)f i

]
(r) ≡

∫
T 0(r − r ′)f i (r

′)dr ′, r ∈ Si, (18)

whereas the second part, describing the velocity field around particle i, coming from a force
density present on another sphere j is written using the Green operator G(ij) defined by

[
G(ij)f j

]
(r) ≡

∫
T 0(r − r ′)f j (r

′)dr ′, r ∈ Si, i �= j. (19)

In the multipole language these integral operators become infinite matrices. The Green oper-
ators matrix elements, given explicitly in [9], are characterized by two groups of four indexes
G(ilmσ, j l′m′σ ′), where i and j are the particle indexes, and lmσ , l′m′σ ′—multipole in-
dexes. It is here worth noting that the elements of the multipole expansion of the Green
operator have a well defined dependence on the interparticle distance

G(ilmσ, j l′m′σ ′) ∝ 1

Rl+l′+σ+σ ′+1
ij

, (20)

where Rij = |Ri − Rj |. Further, the one-particle operator Z−1
0 has only diagonal elements

in the particle indexes i and j . Its multipole matrix elements have therefore the form
Z−1

0 (ilmσ, il′m′σ ′) and are also derived explicitly in [9].
Summarizing briefly, in order to find the induced force densities, an expansion of (15)

in a basis of functions v±
lmσ is carried out. This then leads to an algebraic equation for the

expansion coefficients, which is of the form

c = (Z−1
0 + G)f . (21)

Here, the infinite dimensional vectors c and f with components c(ilmσ) and f (j lmσ) have
been introduced. Now the derivation of the induced force density multipoles boils down to
finding the inverse of the infinite matrix Z−1

0 + G. Practically this is done numerically once
a suitable truncation order has been chosen.

The first multipole moments of the force densities and the fluid velocity field around each
particle correspond to the spherical components of the total force (l = 1, σ = 0), torque
(l = 1, σ = 1) and translational (l = 1, σ = 0) and rotational (l = 0, σ = 1) velocities
of the particles. The solution of (21) allows one to calculate all force multipoles, knowing
the translational and rotational velocities of the particles and the multipoles of the ambient
flow. But in the problems considered in this work, the known quantities are in fact forces
and torques acting on the particles (i.e. the first multipoles of the induced force density)
and the ambient flow, whereas the velocities of the particles are unknown. To find these, the
equation for f , derived by inverting the matrix Z−1

0 + G, must be inversed once again, but
only in the space of the first two multipoles (l = 1 and σ = 0,1). In this way the mobility
matrix μ and the convection operator C are derived. For a precise description of this method,
the reference [9] should be addressed. The formulas which are obtained are of the form of
scattering sequences

μ = μ0 + μ0Z0
1

1 + GẐ0

GZ0μ0 = μ0 + μ0Z0

∞∑

k=0

(−GẐ0)
kGZ0μ0, (22)
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C = μ0Z0 − μ0Z0GẐ = μ0Z0
1

1 + GẐ0

=
∞∑

k=0

μ0Z0(−GẐ0)
k, (23)

where the superposition of operators should be understood in the multipole language as a
summation with respect to particle and multipole indexes. Here μ0 is the translational and
rotational mobility of a single sphere. Further

Ẑ0 = Z0 − Z0μ0Z0, (24)

is the convection-friction single-particle operator. When limited to the space of the first two
multipoles (l = 1, σ = 0,1), the one-particle mobility is the inverse of the one-particle
friction operator. Therefore Ẑ0 as defined by (24) is zero in the space spanned by these
multipoles.

The force densities induced on particle surfaces once subject to external forces and am-
bient flow, may also be formulated in terms of a scattering sequence. It has the following
form [27]

f = 1

1 + Ẑ0G
Z0μ0F − 1

1 + Ẑ0G
Ẑ0v0, (25)

where

F i =
(

F i

T i

)
, (26)

is a vector of external forces and torques. This expression for the induced force densities
will be necessary in further parts of this work.

Here, as we concentrate only on the translational movement of particles only that part of
the mobility matrix (see (22)), convection operator (see (23)) and F (refer to (26)) will be
taken into account. Then only the single particle translational mobility

μt t
0 = 1

6πηa
I , (27)

where I is the unit tensor, is used. For the sake of simplicity of notation, we will omit the
superscript (t).

Indicating the particle indexes explicitly the mobility operator, as given in terms of a
scattering sequence of the form as in (22), has the structure

μ11(X) = μ0 +
∑

i �=1

μ0(1)Z0(1)G(1i)Ẑ0(i)G(i1)Z0(1)μ(1) + · · · , (28)

μ12(X) = μ0(1)Z0(1)G(12)Z0(2)μ0(2)

−
∑

i �=1,2

μ0(1)Z0(1)G(1i)Ẑ0(i)G(i2)Z0(2)μ0(2) + · · · . (29)

In general, each scattering expression for the mobility operator μ, described by a specific
term of (22) is constructed as follows [7, 24]: it begins by establishing the force density
on a given particle j under the influence of an external force. This is given by the operator
Z0(j)μ0(j). The force density localized on that particle induces a flow field in the viscous
fluid, which propagates in the system. This propagation is described by the Green operator
G(kj). Once the disturbance reaches another particle, it creates an additional force density
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given by the action of the operator −Ẑ0(k). This force density is such that the total force
and torques on that particle vanish, as these quantities are set already at the beginning of
the scattering sequence. The mechanism described, can be replicated an arbitrary number
of times. Finally, the velocity of a particle is determined by the operator μ0(i)Z0(i) which
closes the scattering sequence. A strictly analogous interpretation is true in the case of the
convection operator C given by the sequence (23). The only difference takes place at the
beginning of each term, where the initial force density is set by the influence of the ambient
flow ant the operator −Ẑ0(k)v0.

The asymptotic distance behavior of the terms of the scattering sequence is set by the
formula (20). In particular

Z0(i)G(ij)Z0(j) ∼ 1

Rij

, (30)

Ẑ0(i)G(ij)Z0(j) ∼ Z0(i)G(ij)Ẑ0(j) ∼ 1

R2
ij

, (31)

Ẑ0(i)G(ij)Ẑ0(j) ∼ 1

R3
ij

, (32)

for large interparticle distances Rij . These formulas are due to the fact, that the lowest non-
zero multipole element of the operator Z0 is of rank l = 1, σ = 0, but for the convection-
friction operator Ẑ0 it is l = 2, σ = 0. Nevertheless all single hydrodynamic connections
via the Green operator lead to very long-range interactions. Only when two Green operators
connect chosen clusters of particles, a 1/r4 (doubled 1/r2, where r is the distance between
clusters of particles) distance dependence emerges, as each of the Green propagators must
in such a case be at least of the type as in (31).

4 The BBGKY Hierarchy for Reduced Distribution Functions

In order to obtain equations governing the time evolution of these functions, cluster expan-
sions of the hydrodynamic operators μ and C must be derived. This is done on the fol-
lowing way. The hydrodynamic operators μ and C may be expressed in terms of scattering
sequences of the form given by (22). Next, structures which contain the same set of particle
position variables are grouped together. For the mobility matrix (or convection operator)
describing self interaction of particles the following sequence is then obtained

μ11(X) = μ
(1)

11 (1) +
N∑

i=2

μ
(2)

11 (1i) + 1

2!
N∑

i,j=2

μ
(3)

11 (1ij) + · · · , (33)

where μ
(s)

11 (i1, . . . is) is a cluster part which is the sum of all terms of the scattering expansion
of the full mobility matrix (22), which contain exactly the positions of particles i1, . . . , is .
Here, and in all following formulas the abbreviated notation i ≡ Ri will be used. The ex-
pansion introduced is unique and all its elements are well defined. The explicit expressions
for the first terms of this expansion are given for example in [7].

The interaction between different particles, as described by the mobility matrix or con-
vection operator may also by written in a cluster expansion of the form

μ12(X) = μ
(2)

12 (12) +
N∑

i=3

μ
(3)

12 (12i) + · · · . (34)
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Here, as above, μ
(s)

12 (i1, . . . , is) denotes the sum of all terms of the scattering expansion of
the mobility matrix, which begin (looking from the right) at particle 2, end at particle 1 and
contain exactly i1, . . . , is particle positions. An identical expansion exists for the convection
operator.

As already mentioned, in order to formulate a proper statistical description of the consid-
ered system, the set of reduced distribution functions is introduced instead of the function
ρ(X; t). These are defined using the microscopic density

n̂(r1, . . . , rs |X) ≡
∑

k1,...,ks

′
δ(r1 − Rk1) · · · δ(r s − Rks ), (35)

as

n(r1, . . . , rs; t) ≡ 〈
n̂(r1, . . . , rs |X)

〉
t
==

∫
dXn̂(r1, . . . , rs |X)ρ(X; t). (36)

The symbol
∑′

denotes a summation over non-repeating index values and 〈·〉t denotes the
averaging over the particle distribution ρ(X; t).

In case of a system of identical particles this definition boils down to the formula

n(1,2, . . . , s; t) = N !
(N − s)!

∫
d(s + 1) · · ·dNρ(X; t), (37)

where the particle notation introduced in (33) has been used, and the integration with respect
to particle indexes should be understood as

∫
di ≡

∫
dRi . (38)

The evolution equations for the reduced distribution functions are derived by calculating
the time derivative of (37) and using the Liouville equation (7). The following equations are
then obtained:

(
∂

∂t
+ L(s)

)
n(s; t) = −

∞∑

l=1

∫
d(s + l)L(s|s + l)n(s + l; t), (39)

where

– s denotes the set of particles {1, . . . , s},
– s + l denotes the l-particle set {s + 1, . . . , s + l},
and

∫
d(s + l) ≡ 1

l!
∫

d(s + 1) · · ·d(s + l). (40)

Further

L(s)n(s; t) =
s∑

i=1

∇i · {[μF + Cv0]i (s) n(s; t)} , (41)

is the s-particle Liouville operator, where the abbreviated notation should be expanded as

[μF + Cv0]i (s) =
s∑

j=1

μij (s)F j + Ci (s)v0, (42)
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where μ(s) and C(s) are s-particle mobility and convection operators respectively. Likewise

L(s|s + l)n(s + l; t) =
s∑

i=1

∇i · {[μF + Cv0]i (s|s + l) n(s + l; t)} , (43)

is the s + l-particle, extended Liouville operator. Here

[μF + Cv0]i (s|s + l) =
s+l∑

j=1

(μij (s|s + l)F j + Ci (s|s + l)v0) (44)

and the following extended hydrodynamic operators have been introduced

μ11(1, . . . , s|s + 1, . . . , s + l) = μ
(1+l)

11 (1, s + 1, . . . , s + l)

+
s∑

i=2

μ
(2+l)

11 (1i, s + 1, . . . , s + l) + · · · ,

μ12(1, . . . , s|s + 1, . . . , s + l) = μ
(2+l)

12 (12, s + 1, . . . , s + l)

+
s∑

i=3

μ
(3+l)

12 (12i, s + 1, . . . , s + l) + · · · ,

μ1s+1(1, . . . , s|s + 1, . . . , s + l) = μ
(1+l)

1s+1 (1, s + 1, . . . , s + l)

+
s∑

i=2

μ
(2+l)

1s+1 (1i, s + 1, . . . , s + l) + · · · . (45)

These expansions are generalizations of the cluster structures (33) and (34) and may be
interpreted as such expansions when limited to the set of particles 1, . . . , s. Here all terms
must contain all the particles numbered s + 1, . . . , s + l and at least one particle from the
set {1, . . . , s}, as all scattering structures considered here end (at the left) at one of those
particles.

The set obtained by taking different values of s = 1,2, . . . , in (39) forms a hierarchy of
equations. This is the analogue of the BBGKY hierarchy introduced in the kinetic theory of
gases. The summation in (39) formally extends to infinity. In a finite system, this means that
n(1, . . . , s) is equal to zero for s > N , where N is the number of particles in the system.
Usually the BBKGY equations are considered in the thermodynamic limit understood as
N → ∞,V → ∞ while keeping N/V = const. Then formally all integrals in those equa-
tions extend to infinity, this set itself is infinite, and the equations contain an infinite number
of terms, contrary to what is usually the case when considering two-body potential interac-
tions. In order to find an s-particle distribution function it is therefore necessary to know
all the higher-order functions, which is essentially impossible. A solution must therefore
introduce a truncation at some point, which is further physically justifiable.

5 The BBGKY Hierarchy for Correlation Functions

When analyzing a system from the statistical perspective one is usually interested in the
correlations which arise from particle interactions. These can be derived once the reduced
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distribution functions are known, and the following cluster expansion [17] is taken into
account

n(1) = h(1),

n(12) = h(1)h(2) + h(12),

n(123) = h(1)h(2)h(3) + h(12)h(3) + h(13)h(2) + h(23)h(1) + h(123),

...
...

n(s) =
∑

⊔
i mi=s

∏

i

h(mi ), (46)

where the functions h(1, . . . , s) are s-particle correlation functions which vanish whenever
any two particles from the set 1, . . . , s are an infinite distance from each other. Here, the
explicit dependence on time has been left out.

These expansions, when inserted into (39) lead to an analogous hierarchy of equations
for the correlation functions. As an equation for n(1, . . . , s) has the same cluster structure as
the function itself, finding the equation for an s-particle correlation function boils down to
selecting terms where all s particles form a disjoint cluster. In other words this means that all
these particles are contained in some correlation or hydrodynamic sequence. This property
leads naturally to the notion of connectivity. To define it properly, some additional elements
must be introduced. This will now be performed.

The Liouville operator L(s|s + l) is basically a sum of cluster structures of the hydrody-
namic operators μ and C. All these are sums of certain terms of the appropriate scattering
sequences. The Liouville operator has therefore itself a scattering structure and may be for-
mulated in terms of one- and two-particle operators Z0 and G. The consecutive terms of this
series must end (at the left) with one of the particles indexed 1, . . . , s upon which acts the
divergence derivative operator, and start with any of the particles 1, . . . , s + l indicated. The
sequence is then acted upon from the right by the force exerted on the leading particle or
the external flow. Every term of the expansion of L(s|s + l) is characterized by the first and
last particle appearing in the scattering structure and the k-element subset Sk ∈ s of parti-
cles which actually compose the hydrodynamic structure. This structure will be denoted by
�

(k+l)
ij (Sk|s + l), where j and i represent the leading and closing particles [27].
The action of the Liouville operator on a reduced distribution function has the form of

a product of two sequences. It is therefore a sequence itself, the terms of which have the
structure

	[�,c](s|s + l) = ∇i · �(k+l)
ij (Sk|s + l)c(s + l), (47)

where

– Sk is a k-element subset of the set of particles s, such that i ∈ Sk ,
– �

(k+l)
ij (Sk|s + l) is a scattering sequence which begins (looking from the right) at particle

j ∈ Sk ∪ (s + l), and ends at particle i ∈ Sk ,
– c(s + l) is a correlation structure—one of the terms of the expansion of the s + l-particle

reduced distribution function in a sequence of products of correlation functions.

These structures are the main building blocks of the hierarchy equations and can graphically
be represented by diagrams of the form introduced in Appendix B.

According to the topological features of 	[�,c](s|s + l), these structures may be classi-
fied as connected or non-connected. A non-connected term is one which may be factorized
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into functions depending on excluding sets of variables. A connected term is one, where all
particles are linked through a sequence of Green propagators or additional correlation func-
tions. The identification is best performed using the diagrammatic technique summarized in
Appendix B. Connected terms then correspond to connected graphs, and the task of finding
the connected part of the BBKGY hierarchy equation boils down to finding all such graphs
with a given, predetermined structure. The distinction of these graphs may also be done by
introducing for each hydrodynamic scattering expression a correlation function which en-
sures the connectivity of the underlying term 	[�,c](s|s + l). These functions are called
connecting correlation function and are defined as follows:

Let Sk ⊂ s + l be a k-element set and b(s + l|Sk) denote a correlation function, which
ensures that each of the particles from this set is correlated with any particle from the com-
plementary set s + l \ Sk .

For example

b(12|1) = n(12) − h(1)h(2) = h(12),

b(123|1) = n(123) − n(23)h(1) = h(123) + h(12)h(3) + h(13)h(2),

b(123|12) = n(123) − h(12)h(3) − h(23)h(1) − h(13)h(2) − h(1)h(2)h(3) = h(123),

...
.... (48)

The connecting correlation function enables one to write the connected part of the dis-
cussed expressions. If

{L(s|s + l)n(s + l)}c =
s∑

i=1

∇i · {[μF + Cv0]i (s|s + l) n(s + l)}c, (49)

where

[μF ]i (s|s + l) =
s∑

k=1

∑

Sk∈s

[μF ](k+l)
i (Sk|s + l), (50)

and

[Cv0]i (s|s + l) =
s∑

k=1

∑

Sk∈s

[Cv0](k+l)
i (Sk|s + l), (51)

i ∈ Sk , then

{[μF ]i (s|s + l) n(s + l)}c =
s∑

k=1

∑

Sk⊂s

[μF ]i (Sk|s + l)b(s + l|s \ Sk), (52)

where the superscript c denotes the connected part of the expression.
The structure of the correlation functions is connected and such is the structure of the

equation governing its time evolution. In fact the equation for an s-particle correlation func-
tion is exactly the connected part of the equation for the s-particle reduced distribution
function. These equations have therefore the following form

∂h(s; t)
∂t

= −{L(s)n(s; t)}c −
∞∑

l=1

∫
d(s + l){L(s|s + l)n(s + l; t)}c, (53)
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where the superscript c denotes the connected parts of the expressions (49).
For example the equation for the two-particle correlation function has the form

∂h(12; t)
∂t

= −
∑

i=1,2

∇i · {μ(1)
ii (i)F ih(12; t)}

−
∑

i,j=1,2

∇i · {μ(2)
ij (12)F j (h(12; t) + h(1; t)h(2; t))} + · · · , (54)

assuming that v0 = 0.
Note that the term

∑

i=1,2

∇i · {μ(1)
ii (i)F ih(1; t)h(2; t)}, (55)

which is not connected is not present in the above equation. On the other hand, this equations
contains the structure

∇1 · {μ(2)

12 (12)F 2h(1; t)h(2; t)}, (56)

where (according to (34) and (28))

μ
(2)

12 (12) = μ0(1)Z0(1)G(12)Z0(2)μ0(2)

+ μ0(1)Z0(1)G(12)Ẑ0(2)G(21)Ẑ0(1)G(12)Z0(2)μ0(2) + · · · . (57)

But as pointed out in (30), the first term of this expansion behaves asymptotically as 1/R12

for large interparticle distances R12. Such terms may lead to non-integrability of the cor-
relation function h(12; t). Further, as similar expressions are present in the integrals of the
right-hand side of the BBGKY hierarchy equations, these might not be convergent in the
thermodynamic limit.

The next section will be devoted to the analysis of the derived hierarchy of equations.
Special attention will be concentrated on expressions which lead to non-integrable expres-
sions in these equations. A procedure to deal with such terms will be introduced.

6 Resummation of Non-integrable Expressions

In the previous section we obtained equations which govern the time evolution of the re-
duced distribution functions and correlation functions in a suspension of hydrodynamically
interacting particles. We have also pointed out, that the right-hand sides of those equations
contain expressions, which asymptotically decay proportionally to 1/rα , where α = 1,2,3.
These are non-integrable. A parallel problem is well known in the Debye-Hückel theory of
interacting charged particles, when the long-ranged electrostatic interactions lead to similar
complications [11].

In this part we will concentrate on the selection of all expressions which might lead to
non-integrability. These will later be treated in a special way and summed together to form
physically meaningful fields.

We begin by invoking the formula for the local suspension velocity field. It is given
by (12). This field is valid throughout the suspension. At points in the fluid, it describes the
fluid velocity field, whereas at points inside the particles it follows their rigid-body motion.



Stokesian Dynamics—The BBGKY Hierarchy for Correlation Functions 143

Next the average (here and in subsequent equations we omit the explicit time dependence,
whenever it does not lead to confusions)

〈
v(r|X)n̂(r1, . . . , rs |X)

〉
, (58)

is introduced. As all many-particle expressions it may be written in terms of a cluster ex-
pansion according to

〈v(r)〉 = c(r), (59)
〈
v(r)n̂(r1)

〉 = c(r)n(r1) + c(r|r1),
〈
v(r)n̂(r1, r2)

〉 = c(r)n(r1, r2) + c(r|r1)n(r2)

+c(r|r2)n(r1) + c(r|r1, r2),

...
..., (60)

where a vector field c(r|r1, . . . , rs) describes correlations between the suspension velocity
fluctuations at point r and fluctuations of the particle concentration at points r1, . . . , rs .

In order to proceed, the notion of reducibility has to be introduced. This will be done
along the lines of [27], starting by the definition of the concept of connection lines.

A two-particle Green operator G is called a connection line when a term 	[�,c] can be
written in the form

	[�,c](s|s + l) = ∇i · [�(k+l)
ij (Sk; s + l)c(s + l)]

= ∇i · {�(n+m)
ip (σn;σm)c(�)}G(pq) · �(n′+m′)

qj (σ̄n′ ; σ̄m′)c(�̄), (61)

where

1. σn and σ̄n′ are n and n′-element (n + n′ = k) disjoint sets such that Sk = σn ∪ σ̄n′ , k =
1,2, . . . , s, n = 1, . . . , k. Further i ∈ σn, so this set is by definition not empty.

2. The sets σm and σ̄m′ are m and m′-element (m + m′ = l) disjoint sets such that s + l =
σm ∪ σ̄m′ , m = 0, . . . , l.

3. � i �̄ are disjoint sets such that s + l = � ∪ �̄ and

� ⊇ σn ∪ σm, (62)

�̄ ⊇ σ̄n′ ∪ σ̄m′ . (63)

4. G(pq) is a two-particle Green operator connecting the two disjoint structures which
appear before and after it.

Connection lines appearing in the hierarchy mark those Green operators, which once
removed, lead to non-connectivity of the discussed structures. The distinction of these oper-
ators is due to the extremely long range of interaction related by single Green operators (as
described by (30)–(32)). When a structure does not contain connection lines, it is said to be
irreducible. Each Green’s function is then doubled by another hydrodynamic connection, or
a sufficiently short-ranged correlation function. All terms then decay at least proportionally
to 1/r4. This is illustrated in diagrammatic form in Appendix B.
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In the first step toward a reformulation of the hierarchy equations, all irreducible struc-
tures are collected. These are written in terms of two operators defined by the formulas:

L
(s+l)[n](s) =

s∑

i=1

∫
d(s + l)∇i ·

[
(μF )i(s|s + l)n(s + l; t)

]irr

, (64)

C
(s+l)[n](s) =

s∑

i=1

∫
d(s + l)∇i ·

[
Ci (s|s + l)n(s + l; t)

]irr

. (65)

Next all remaining terms are reduced according to the procedure described in detail in [27].
This is basically done in the following way: in all reducible terms having the structure (61)
the first connection line (looking from the left in a scattering structure) is chosen. Then, the
expression, which is on the left of it is by definition irreducible (as it does not contain con-
nection lines). Its scattering structure is the same as that of a particular term of the expansion
of the convection operator C given by (23). The expression which stands on the right of the
connection line may be reducible or not. Its scattering structure is exactly the one of the
expansion (25) of f . Further, a connection line splits the set of s particles, which variables
are not integrated in the equations, into two clusters. One, σk ∈ s enters the expressions on
the left of the connection line, while the complimentary set σ̄k′ ∈ s, k + k′ = s takes part in
the scattering and correlation structure on the right of the connection line. All other particles
are distributed in either of the groups.

In the thermodynamic limit, when the number of all particles is infinite, a summation of
all such reducible structures leads to the operator C

(s+l)[n](σk) (refer to (65)) standing on the
left of the connection line, while on the right of the connection line, the exact hydrodynamic
expression (25) of the induced force densities is established. Combined with the correlation
structure, it boils down to the averaged field

〈
f (r|X)n̂(σ̄s−k|X)

〉
. (66)

The support of this field is limited to the particle surfaces, outside of which it is equal to
zero. The convection operators (see (65)) support is also confined to these surfaces. Taking
this into account, the definition (13) of the suspension velocity field, together with the def-
inition (19) of the Green propagator connecting two particles, may be used to combine the
connection line and the averaged induced force density into the field

〈v n̂(σ̄s−k)〉 = v0n(σs−k) + G
〈
f (X)n̂(σs−k|X)

〉
. (67)

The BBGKY equations may now be written as

∂n(s; t)
∂t

=
∞∑

l=0

{
L

(s+l)[n](s) +
∑

σk∪σ̄s−k=s

C
(s+l)[n](σk)〈v n̂(σ̄s−k)〉

}
, (68)

where the operator L
(s+l) is defined according to (64), and C

(s+l)[n](σk) is given by the
irreducible expression (65), where the set of s particles has been substituted by its k-element
subset denoted by σk .

An analogous reformulation of the hierarchy equations is possible when considering the
evolution of the correlation functions. Then in a natural way the correlation fields (60) and
connected operators appear. The BBGKY hierarchy equations then have the following form

∂h(s; t)
∂t

=
∞∑

l=0

{
L

(s+l)
c [n](s) +

∑

σk∪σ̄s−k=s

C
(s+l)
c [n](σk)c(|σs−k)

}
, (69)
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where

L
(s+l)
c [n](s) =

s∑

i=1

∫
d(s + l)∇i · [{(μF )i(s|s + l)n(s + l; t)}c

]irr
, (70)

C
(s+l)
c [n](σk) =

∑

i∈σk

∫
d(s + l)∇i

[{Ci (σk|s + l)n(σk ∪ s + l; t)}c
]irr

, (71)

and c(r|σs−k) is defined by (60).
The operators L

(s+l)
c [n](s) and C

(s+l)
c [n](σk) introduced above are irreducible. By def-

inition they do not contain connection lines. According to the reformulated equations, the
evolution of an s-particle reduced distribution function or correlation function can therefore
be expressed through irreducible, and what follows—local—operators and additional fields.
These fields (67), or equivalently c(r|σ), given by (60) contain all non-integrable expres-
sions. This means that whenever a variable Ri is included in the set σ , this field contains
(all present in the equations) non-integrable expressions which behave like 1/|r − Ri |α , for
α = 1,2,3.

7 Conclusions

In this paper the statistical description of a system of hard particles immersed in a vis-
cous fluid has been introduced. Assuming Stokesian particle dynamics, hierarchies of equa-
tions governing the time evolution of the reduced distribution functions and the correlation
functions were derived. It was shown that all non-integrable expressions contained in these
equations can be resummed to form physically meaningful fields, namely fields describ-
ing correlations between suspension velocity fluctuations and particle concentration fluctu-
ations. This reformulation of the hierarchy equations is the basis on which a further analysis
starts, the main aim of which will be to resolve the two coupled problems mentioned in the
introduction—i.e. the derivation of the stationary particle distribution function and system-
size dependence of velocity fluctuations. This will be done along the lines of [11], where
the derivation of the Debye-Hückel distribution function was performed through an analysis
of the equilibrium BBGKY hierarchy and a resummation of its non-integrable expressions.
In fact a preliminary, although very promising result of this theoretical scheme, concerning
monodisperse suspensions, has already been published [4].

Appendix A: Polydisperse Suspension

The derivation and analysis of the BBGKY hierarchy, as presented in this work is limited
to the case of identical particles. It is nevertheless a straightforward task to generalize these
results to the case when particles differ in size and density (i.e. the total external force). The
only obstacle is a problematic and elaborate notation scheme, which must be introduced.
Let us assume that all particles form K groups, such that within each group all particles
are identical and characterized by a radius ai , density ρi and number Ni , i = 1, . . . ,K .
The difference in density of particles is important as in a gravitational field (the problem of
sedimentation), it leads to a difference in forces acting on particles according to the formula

F i = 4πa3
i (ρi − ρ)g

3
. (72)
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Now the definition of the reduced distribution function, as given by (35) and (36) must be
modified to take into account that particles are distinguishable. In each group i = 1, . . . ,K

of particles the si -particle microscopic density (si = 1, . . . ,Ni ) is defined by

n̂(i)(r1, . . . , rsi ) =
∑

k1,...,ksi

′
δ(r1 − R

(i)
k1

) · · · δ(r si − R
(i)
ksi

), (73)

where k1, . . . , ksi = 1, . . . ,Ni and R
(i)

1 , . . . ,R
(i)
Ni

are the positions of particles of the i-th
group. Then the generalized reduced distribution function can be defined as

n(r
(1)

1 , . . . , r (1)
s1

, . . . , r
(1)

1 , . . . , r (K)
sK

; t) = 〈n̂(1)(r
(1)

1 , . . . , r (1)
s1

) . . . n̂(K)(r
(K)

1 , . . . , r (K)
sK

)〉. (74)

These functions have the following interpretation:
n(s1, s2, . . . , sK ; t)ds1 · · ·dsk is the average number of ensembles of s1 particles of kind 1,
s2 particles of kind 2, etc in a configuration ds1 around s1, ds2 around s2, etc. Here the
abbreviated notation si ≡ {r (i)

1 , . . . , r (i)
si

} has been used.
The time evolution equation of the functions (74) may be obtained directly from the

hierarchy of (39) once on the right-hand side, in expressions where additional particles are
considered, the operation

∞∑

l=1

1

l!
∫

d(s + l), (75)

is substituted by

∞∑

l1=1

∞∑

l2=1

. . .

∞∑

lK=1

1

l1!
1

l2! . . .
1

lK !
∫

d(s1 + l1) · · ·d(sK + lK). (76)

Then all further properties, such as the connectivity and reducibility follow.

Appendix B: Diagrammatic Technique

B.1 Definitions

In many cases it is convenient to represent the scattering sequences and correlation structures
in terms of diagrams. We will introduce this technique by means of examples based on terms
existing in the hierarchy equations. Notation used in a recent work [28] will be adopted:

1. A horizontal line - - - - corresponds to a particle (particle line) and is numbered on the
left.

2. A term of the scattering sequence of a hydrodynamic operator begins (looking from the
right) with the superposition Z0μ0F or −Ẑ0v0. These will be represented by diagram
elements represented by Fig. 1a and Fig. 1b respectively.

3. A circle represents one-particle friction operators. Depending on its position in the scat-
tering sequence, it may denote the superposition μ0Z0 or the operator −Ẑ0. In general,
all diagrams used here end with μ0Z0 as it is always the velocity, which is of interest.

4. Each Green operator is represented by a single vertical line |. The hydrodynamic structure
is formed by a sequence of these operators, where at each circle representing the operator
−Ẑ0, one line enters tangent from the right and one leaves at the left. A hydrodynamic
sequence is always connected and forms an ordered structure.
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5. The divergence over a particles position variable is denoted by a rotated nabla symbol at
the beginning of a particle line.

6. A filled symbol at the beginning of a given particle line denotes the operation of integra-
tion over that particles position variable.

7. Particle lines of correlated particles are connected by a double vertical lines ||. A node
of the correlation function is depicted by a small circle between the double vertical lines
and at a particles line.

For example the correlation-scattering structure

∫
d3∇2 · μ0(2)Z0(2)G(21)Ẑ0(1)G(13)Z0(3)μ0(3)F 3 h(12), (77)

is represented by the diagram (2), whereas the structure

∫
d3∇2 · μ0(2)Z0(2)G(21)Ẑ0(1)G(13)Ẑ0(3)G(32)Ẑ0(2)v0 h(23), (78)

being part of the scattering sequence of C2v0 is represented by the diagram found in Fig. 3.

B.2 Diagrams Representing BBGKY Hierarchy Equation

The diagrammatic representation of the right-hand side of the BBGKY hierarchy equation
for the time evolution of an s-particle reduced distribution function is a sum of all graphs of
the following class:

– containing s numbered particle-lines without integration, one of which begins with a di-
vergence symbol.

– containing an arbitrary (l ≥ 0) number of particle lines which begin with a black symbol.
– particle lines are connected by a sequence of Green propagators (hydrodynamic structure)

represented by vertical lines.

Fig. 1

Fig. 2 Diagram representing
structure (77)
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Fig. 3 Diagram representing
structure (78)

Fig. 4 Diagram representing structure (79)

– the correlation structure, represented by an arbitrary configuration of double vertical lines
might introduce additional particle lines without integration not contained in the hydro-
dynamic structure.

– all diagrams begin (looking form the right) with one of the symbols depicted at Fig. 1.

The BBGKY hierarchy consists of all such, topologically non-equivalent diagrams.
Whenever a suitable numbering scheme for particle lines beginning with a filled symbol
is chosen, the combinatoric weight 1/l! falls out of the equations, as only one represen-
tative, out of l! possible permutations is chosen (topologically non-equivalent). A inherent
numbering procedure is provided by the structure of the hydrodynamic sequence itself. As
no disjoint clusters may form it, it uniquely orders all the particle lines according to their
first occurrence in that sequence.

B.3 Connected Expressions

Consider as an example the following correlation-scattering structure:

∫
d3∇1 · μ0(1)Z0(1)G(13)Z0(3)μ0(3)F 3n(123). (79)

According to the expansion of n(123) in terms of correlation functions (46) this structure is
equal to the sum of diagrams found on Fig. 4a through Fig. 4e.
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Fig. 5 Diagram representing
structure (81)

Fig. 6 Diagram representing the
structure of the correlation field
c(r|r3, r4)

Connected diagrams are Fig. 4a–d. Indeed

{μ0(1)Z0(1)G(13)Z0(3)μ0(3)F 3n(123)}(c)

= μ0(1)Z0(1)G(13)Z0(3)μ0(3)F 3(h(123) + h(13)h(2) + h(23)h(1)). (80)

In general, a non-connected expression always consists of a connected part, which holds
the hydrodynamic structure, and the rest, which contains only correlation functions, and
which itself might by connected or non-connected.

The BBGKY hierarchy equations for the correlation functions consist of a subclass of
diagrams (Sect. B.2) which are connected.

B.4 Connection Lines and Reducibility

In the structure

∇2 · μ0(2)Z0(2)G(21)Ẑ0(1)G(12)Ẑ0(2) G(23)

× Ẑ0(3)G(34)Ẑ0(4)G(43)Ẑ0(3)G(34)

× Z0(4)μ0(4)F 4 h(12)h(34), (81)

presented in graphical form in Fig. 5a, the operator G(23) is a connection line.
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As this expression contains a connection line it is said to be reducible. It can be depicted
in a block-diagram form, as done on Fig. 5b. Notice that the structure formed by neglecting
the expression on the left of the connection line is part of the correlation field c(r|r3, r4).
Indeed, this field is constructed as a sum of all diagrams of the form depicted in Fig. 6. Here
the filled block represents an arbitrary number of particles, which are integrated over.

The distance dependence of connection lines is due to properties of the single-particle
operators which stand at the beginning and at the end of it. Whenever a Green operator con-
nects two Z0 operators, it behaves asymptotically as 1/r with the interparticle distance r .
When at one end of a connection line the operator Z0 is present, whereas at the other, the
convection-friction operator Ẑ0, the Green operator decays asymptotically as 1/r2. Finally
when a connection line connects two Ẑ0 operators, as is the case in the structure (5), is be-
haves as 1/r3 because the multipole elements with l = 1, σ = 0,1 are then equal to zero.
Due to this property, whenever two Green operators connect clusters of particles, the inter-
action between those clusters decays at least as fast as 1/r4. Therefore only single Green
operators lead to non-integrable interactions.
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